
Journal of Computational Physics154,237–241 (1999)

Article ID jcph.1999.6308, available online at http://www.idealibrary.com on

NOTE

Good Neighborhoods for Multidimensional
Van Leer Limiting

Blair Swartz

Group T-7, MS B284, University of California, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
E-mail: bks@lanl.gov

Received March 3, 1999

Key Words:Van Leer limiting; finite volume; flux corrected transport.

Van Leer limiting uses nearby cell-means of a function (integral mean-values—weighted
by a prescribed positive density—that are taken over each of a collection of nearby compu-
tational cells) to restrict the range of values allowed to a linear approximation of the function
on a given central cell. These nearby cells—whose cell-means are actually involved in the
limiting—are called the central cell’sneighbors; and the set of these neighbors is called
the central cell’sneighborhood. The use of certain neighborhoods in multidimensional
Van Leer limiting can force even linear functions to be subject to restriction over the central
cell. A simple geometric property characterizes those neighborhoods whose use would not
require that any linear functions be limited. (Such a neighborhood is called agood neighbor-
hood for Van Leer limitingsince its use would not preclude second-order accuracy in the local
linear approximation of a smooth function by one that is Van Leer limited—unless the addi-
tional, here unspecified, details for obtaining the approximation preclude it by themselves.)
The characterization is as follows, where it is presumed that the cells lie in a finite dimen-
sional vector space:One has chosen a good neighborhood for a given central cell if and
only if the convex hull of the centroids of its associated neighbors contains that central cell.

Details now follow.
In the context of Van Leer limiting when locally approximating a function, all cell-means

are prescribed. The approximating functions are to be piecewise-linear with a possibly
different linear function on each mesh cell. Dukowicz and Kodis [2, pp. 213–214, Sect. 2.3.1]
describe a form of Van Leer limiting on these approximations that is applicable in one or
more dimensions as follows:

DEFINITION. Multidimensional Van Leer limiting. On all cells the mean value is to
remain as prescribed—but, on a given central cell, one is restricted to those approximating
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linear functions whoserange of values lies in the smallest interval containing the given
cell-means associated with the central cell’s neighboring cells.

(Should the cell’s own mean value not lie in the latter range, one chooses a gradient
of zero. Surprisingly, this can also preclude second-order accuracy when approximating
smooth functions using an inappropriate set of neighboring cells in more than one dimension.
This note’s penultimate paragraph contains an example.) A definition similar to Dukowicz
and Kodis’ is found in Barth and Jespersen [1, p. 5]. In this note the cell centroids and
the cell-means are to be based on the same (possibly constant) prescribed positive density
function.

Such limiting in one space dimension (Van Leer [5, pp. 289–290; 6, pp. 117–118]) does
not affect any globally defined linear function as long as it involves both a left neighbor
and a right neighbor. That is to say,any given linear functionL satisfies the Definition’s
criteria when it both specifies the mean cell values on the neighboring mesh intervals
and is simultaneously used as the local linear candidate function on the central interval.
This is independent of which interval(s), out of a collection of possibly irregular mesh
intervals to the left, that one takes as left-neighbor(s); and which interval(s) to the right, as
right-neighbor(s). (Consequently, Van Leer limiting does not, by itself, preclude second-
order accuracy on any such mesh in one dimension.) This one-dimensional result is also a
consequence of the following multidimensional.

Remark. There exists no linear function that will be subject to Van Leer limiting on a
given central cell if and only if that cell is contained in the convex hull of the centroids
of its neighbors. Hence, one has chosen a good neighborhood for a given central cell if
and only if the convex hull of the centroids of its associated neighbors contains that central
cell.

Examples of good and not-so-good neighborhoods (constant density) are illustrated in
Fig. 1. The convex hull appropriate to Fig. 1a is enclosed by the dotted contour. Barth and
Jespersen [1, p. 6] reject two gradient estimates involving configurations like Fig. 1e—
but not because of the possibility that the limitingitself can preclude exact results when
approximating linear functions. They accept configurations like Fig. 1g for their esti-
mates.

Inspired by Fig. 1f, suppose the interior pointsx of a tetrahedronC satisfyLi (x)<0,
1≤ i ≤ 4 for some four linear functionsLi . Then any neighborhood ofC that consists of
four cells(Ci )

4
1 having centroids(c̄i )

4
1 that satisfy(L j (c̄i )>0, j 6= i )4i = 1 would be a good

neighborhood ofC. Geometrically, this asks that each of the tetrahedron’s four “exterior
vertex solid angles” contain a neighboring cell’s centroid.

Proof of the remark. Supposex0 lies in the given cellC but outside the convex hull
HN̄ (C) of the centroidsN̄ (C) of C’s chosen “neighboring cells”N (C). Then a linear
function that is subject to Van Leer limiting can be constructed as follows. LetP be a
(hyper) plane that (strictly) separatesx0 fromHN̄ (C), and letν be the unit normal forP that
points from the convex hull towardsx0. The linear function

L(x) := ν · (x − x0)

increases in the direction ofν and is negative onHN̄ (C) (in particular, at the centroids̄N (C)
of C’s “neighbors”), and the part ofC that lies in the positive half-space forL is nonempty.
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FIG. 1. Some good and some not-so-good neighborhoods of a central cellC.

A constantc > 0 can be added toL,

Lc := L + c,

so thatLc is positive both onC and onHN̄ (C). The mean value ofLc over one ofC’s
neighboring cells is the value ofLc at that neighbor’s centroid. SinceL was negative at all
of these neighboring cells’ centroids but was 0 atx0, Lc’s maximum overC is at leastc,
which exceeds the maximum ofLc’s cell-means over the neighborhood. So,Lc is subject
to Van Leer limiting.

On the other hand, supposeC is contained in the convex hullHN̄ (C), a convex polyhedron
whose vertices are a subset of̄N (C). Then a given linear functionL takes on its extreme
values overHN̄ (C) at points inN̄ (C). SoL ’s values onC lie between these extreme values,
sinceC is contained inHN̄ (C). These extreme values are also the extremes ofL ’s cell-means
overN̄ (C). Thus,L is not subject to Van Leer limiting onC. This completes the proof of
the Remark.

Some Properties of Good Neighborhoods

1. In typical irregular grids in more than one dimension, there always exists a good
neighborhood for a grid-cell that is sufficiently far from grid boundaries.

2. Typical choices of a minimal number of immediate neighbors may not yield a good
neighborhood; see, e.g., Fig. 1b and Fig. 1e.

3. A set of cells that contains a good neighborhood as a subset is itself a good neigh-
borhood; e.g., compare Fig. 1f with Fig. 1g.

4. Cells in good neighborhoods may overlap (but they don’t in most applications).
5. Being a good neighborhood is invariant under linear maps of the mesh.
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6. The Van Leer limited linear approximations of a given linear function are subject
to the same restrictions—if any—on their gradients when the mesh is uniformly expanded
or shrunk by a change in scale.

(If the density is not constant, then the last two are true only asymptotically—as the mesh
gets small—and where the density is smooth.)

Not being allowed to reproduce linear functions can affect convergence rates of local
linear approximations. For the following discussion of convergence, suppose (a) that the
density is constant; (b) that the mesh is not too distorted: the ratio of the size of a cell’s
circumscribing sphere to its inscribing sphere, taken over all cells, is bounded; (c) that—
absent Van Leer limiting—the local approximation algorithm is exact for linear functions
andO(h2) accurate for smooth nonlinear functions (withh being the diameter of local mesh
cells); and (d) that the gradient of the function being approximated is not zero nearby.

Consequences for Convergence

1. The use of bad neighborhoods reduces the potential accuracy of Van Leer limited
approximations of certain smooth functions to first-order. For example, if the linear function
L is subject to Van Leer limiting on some mesh cell, then, as the grid is shrunk, none of the
(limited) approximating linear functions has a gradient converging locally to gradL, and
the (limited) linear approximations themselves converge locally toL with no better than
first-orderO(h) 6= o(h) accuracy. A quadratic function with the same linear partL fares no
better asymptotically.

2. For sufficiently good neighborhoods, however, local linear approximations of
smooth (e.g., twice differentiable) functions are not subject to Van Leer limiting ash
gets small and, so, converge with second-orderO(h2) accuracy. “Sufficiently good,” here,
means that the shadow (via orthogonal projection) of the central cellC on any line is well
inside the shadow of the convex hullHN̄ (C) on that same line. By “well inside” is meant that
(a) it is inside, and (b) it is more thano(h) from the either end of the shadow ofHN̄ (C). For
this it is also supposed that the approximation algorithm, absent Van Leer limiting, is stable
against perturbations ash gets small—i.e., changes in the data of ordere in size produce
changes in the (unlimited) approximation that are of the same orderO(e) in size.

The author believes that, in these circumstances and ash goes to zero, Van Leer limiting
takes effectonly if the function being approximated is too rough to be entitled to theO(h2)

accuracy one associates with local approximation by linear functions.
In current computational practice the set of pointsC over which the values of a linear

function L are being limited, and the set of points̄N which are associated with the values
involved in the limiting, may differ from the setsC andN̄ (C), respectively, used above. In
this more general context, it follows as before thatN̄ is a “good set of points” for the Van
Leer limiting of linear functions overC if and only ifC is a subset ofH(N̄ ), the convex hull
of N̄ .

For example, Durlofskyet al.[3, pp. 66–67] consider four triangles grouped as in Fig. 1e.
But they limit the values of a linear function over a setC of only three points from the central
triangleC, namely, at the midpoints ofC’s three sides. The values doing the limiting in
their case are still associated with the centroids (constant density) of the three neighboring
triangles; i.e.,N̄ = N̄ (C) as before. Thus, the (possibly irregular) triangulations in [3] that
can lead to second-order accuracy are characterized for each triangleC as follows: the
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FIG. 2. Bad neighborhoods for Van Leer limiting at only the midpoints ofC’s sides.

triangle determined byC’s three neighboring cells’ centroids must contain the midpoints
of C’s three sides. For example, this is violated in each configuration in Fig. 2—since, in
each, the centroids of the left and the right triangle are both below the midpoints ofC’s
left and right side. Indeed, the functionL(x) given by the (signed) distance that the point
x is from the line containing the triangleC’s base is both linear and subject to Van Leer
limiting at two of the three midpoints. (In fact, Fig. 2b is sufficiently distorted so that Van
Leer limiting—over eitherC or all of C—limits one to the appropriateconstantfunction,
because the value ofL at C’s centroid lies outside the interval containing its values at the
three neighboring centroids.) The result in all these cases is first-order accuracy locally for
any limited approximation toL—and associated non-convergent gradient estimates.

In work that follows up on Durlofskyet al., Liu [4, p. 704, Definition 3.1] uses the centroids
of a neighborhood like Fig. 1g for̄N instead. This now allows the exact approximation of
linear functions at the three side-midpointsC, since, now,C ⊂ C ⊆ H ¯(N ).
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